
Abstract. Renal neoplasms are highlighted as one of the 10
most common types of cancer. Renal cell carcinoma (RCC)
is the most common type of renal cancer, considered the
seventh most common type of cancer in the Western world.
The most frequently altered genes described as altered are
VHL, PBRM1, SETD2, KDM5C, PTEN, BAP1, mTOR, TP53,
TCEB1 (ELOC), SMARCA4, ARID1A, and PIK3CA. RCC
therapies can be classified in three groups: monoclonal
antibodies, tyrosine kinase inhibitors, and mTOR inhibitors.
Besides, there are targeted agents to treat RCC. However,
frequently patients present side effects and resistance. Even
though many multidrug resistance mechanisms already have
been reported to RCC, studies focused on revealing new
biomarkers as well as more effective antitumor therapies
with no or low side effects are very important. Some studies

reported that natural products, such as honey,
epigallocatechin-3-gallate (EGCG), curcumin, resveratrol,
and englerin A showed antitumor activity against RCC.
Moreover, nanoscience is another strategy to improve RCC
treatment and reduce the side effects due to the improvement
in pharmacokinetics and reduction of toxicities of
chemotherapies. Taking this into account, we conducted a
systemic review of recent research findings on RCC
hallmarks, drug resistance, and adjuvant therapies. In
conclusion, a range of studies reported that RCC is
characterized by high incidence and increased mortality
rates because of the development of resistance to standard
therapies. Given the importance of improving RCC treatment
and reducing adverse effects, nanoscience and natural
products can be included in therapeutic strategies. 

Cancer is a complex multifactorial disease considered the
greatest problem of public health in recent decades and the
second leading cause of death in the world, with an average
of 9.8 million deaths per year (1).

Renal neoplasms are highlighted as one of the 10 most
common types of cancer, mainly in the West. These cancers
are classified into four main types: renal cell carcinoma
(RCC), Wilms tumor, renal urothelial carcinoma, and renal
sarcoma (2).

RCC is the most common type of renal neoplasm, considered
the seventh most common type of cancer in the Western world,
with an increase in incidence of 80%-90% of kidney cancers in
adults, prevalence of 2%-3% of all malignancies in adults, and
mortality of approximately 40% (3-5).
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RCC is the third most prevalent type of genitourinary
cancer and the most common malignancy in the kidneys,
with 403,000 new diagnoses per year (2.2% of all tumors),
and more than 175,000 deaths in the same period (1.8% of
mortality from cancer) (6, 7). The USA incidence is
estimated at 76,080 new cases and 13,780 deaths in 2021 (3).
The survival of patients with locally advanced and metastatic
disease at 5 years is 69.6% and 12%, respectively (8, 9). The
GLOBOCAN study estimated an incidence of 2.2%-3.3%
and mortality of 1.8%-2.6% in developed countries (7, 10).

Moreover, several risk factors can be associated with this
group of neoplasms, such as predisposition to chronic kidney
disease, estrogen therapy, exposure to asbestos, petroleum
and heavy metal products, diabetes, sedentary lifestyle,
family history, poorly controlled hypertension, smoking,
obesity, alcohol intake, and diet (8, 11-21). 

RCC can trigger local symptoms such as hematuria, pain
in the lower back, palpable abdominal mass, and systemic
symptoms, for example, weight loss, fever, and abdominal
pain (22, 23). Hematuria, low back pain, and palpable
abdominal mass are considered the classic triad in diagnostic
approaches to RCC. Furthermore, between 50%-80% of
cases are diagnosed incidentally through abdominal
ultrasound, contributing to the early detection of
asymptomatic tumors (24-26).

Although more cases have been diagnosed early due to the
increase in imaging exam applications, RCC still constitutes
a great challenge to public health considering that it is
characterized as a tumor frequently asymptomatic and with
reduced clinical manifestation, when compared to the other
types of cancers (9). 

Renal Cell Carcinoma Staging and Subtypes

RCC is considered a complex disease characterized as a
heterogeneous group of tumors with different genomic,
histological, and clinical characteristics. In addition, other
factors such as the extent of the disease, the presentation of
different clinical phenotypes, and different responses to
treatment make it even more complex (23, 27-29).

RCC staging is determined considering the anatomical site
of the primary tumor (T) (Figure 1), regional lymph node (N),
and metastasis distance (M) according to American Joint
Committee on Cancer (AJCC), known as TNM (30, 31).
Regarding the primary tumor (T): in the absence of evidence
of a primary tumor is classified as T0, a tumor 7 cm or less
and limited to the kidney as T1, if >7 cm and limited to the
kidney as T2, if it reaches larger vessels or the perirenal tissue
without going beyond Gerota’s fascia as T3, if it invades
Gerota’s fascia as T4, and if it cannot be evaluated as TX.
Regarding regional lymph nodes (N): if there are no
metastases in lymph nodes is classified asN0, if there is lymph
node metastasis as N1, if lymph nodes could not be evaluated

as NX. Regarding distant metastasis (M): in the absence of
distant metastases is classified as M0, if there are distant
metastases as M1, if the metastasis cannot be evaluated as
MX. Thus, these parameters can receive numerical graduations
(T0 to T4; N0 to N1 and M0 to M1), alphabetical (a, b, c), and
“X” when the category cannot be evaluated, giving more
details on each of these analyzed aspects (30, 32) (Table I).

There are three main subtypes based on the appearance of
RCC, such as clear cell (ccRCC), papillary (pRCC), and
chromophobic (crRCC). These subtypes represent
approximately 90% of all RCCs. The remaining 10% comprise
rare and benign subtypes (Table II) (5).

Genetic and Metabolic Hallmarks of RCC

Although the histological classification of renal tumors is an
important tool in the diagnosis and evaluation of the prognosis
of patients (33), molecular characteristics that differentiate the
subtypes of this disease have been increasingly used. It is
important to more precisely characterize the subtypes, as well
as to improve the prognosis and treatment (34).

Taking this into account, studies have focused on the
molecular mechanisms of RCC. Thus, The Cancer Genome
Atlas (TCGA) includes several genomic studies, focusing on
individual tumor subtypes, using data generated from
multiple platforms (35).

Regarding the molecular profile of RCCs, recurrent
alterations are described into specific subtypes. For example,
the most prevalent RCC subtype, ccRCC, is associated with
some mutations. The most frequent genes described as
altered are VHL, PBRM1, SETD2, KDM5C, PTEN, BAP1,
mTOR, TP53, TCEB1 (ELOC), SMARCA4, ARID1A, and
PIK3CA. In addition to punctual alterations, alterations in
chromosomes 3, 5, 10, and 14 are also frequently described
in this subtype (34, 36-40).

Approximately 80% of ccRCCs present inactivation of the
Von Hoppel Lindau (VHL) gene by mutation or methylation
(34, 41). The VHL gene is a tumor suppressor and, in many
cases, one of its alleles is inactivated by some kind of
mutation, and the second is affected by a deletion in the
3p25-26 region in approximately 90% of cases of ccRCC
(42-44), thereby playing an important role in both hereditary
and sporadic disease (41). This mutation causes elevated
levels of factors that induce hypoxia and increases the levels
of vascular endothelial growth factor (VEGF), thereby
facilitating tumor-associated angiogenesis. VEGF mediates
neoangiogenesis that allows tumor nutrition and growth (45).

ccRCC is the subtype frequently present in hereditary von
Hippel-Lindau syndrome, an autosomal dominant condition
with germline mutations in the VHL gene. In this syndrome,
approximately 40% of those affected will develop RCC,
which is usually characterized by the presence of small
tumors that develop in the kidneys (46, 47).
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Figure 1. Renal cell carcinoma staging by primary tumor classification (T).

Table I. Most used staging system in renal tumors. System TNM (American Cancer Society, 2020).

Stage               Stage grouping                  Description

I                          T1 N0 M0                     The tumor is 7 cm across or smaller and is only in the kidney (T1). There is no spread to 
                                                                  lymph nodes (N0) or distant organs (M0).
II                         T2 N0 M0                     The tumor is larger than 7 cm across but is still only in the kidney (T2). There is no spread to 
                                                                  lymph nodes (N0) or distant organs (M0).
III                        T3 N0 M0                     The tumor is growing into a major vein (like the renal vein or the vena cava) or into tissue 
                                                                  around the kidney, but it is not growing into the adrenal gland or beyond Gerota’s fascia (T3). 
                                                                  There is no spread to lymph nodes (N0) or distant organs (M0).
                        T1-T3 N1 M0                  The main tumor can be any size and may be outside the kidney, but it has not spread beyond 
                                                                  Gerota’s fascia. The cancer has spread to nearby lymph nodes (N1) but has not spread to distant 
                                                                  lymph nodes or other organs (M0).
IV                   T4, any N e M0                 The main tumor is growing beyond Gerota’s fascia and may be growing into the adrenal gland 
                                                                  on top of the kidney (T4). It may or may not have spread to nearby lymph nodes (any N). 
                                                                  It has not spread to distant lymph nodes or other organs (M0).
                       Any T, N e M1                 The main tumor can be any size and may have grown outside the kidney (any T). It may or may not have 
                                                                  spread to nearby lymph nodes (any N). It has spread to distant lymph nodes and/or other organs (M1).

Table II. Renal cell carcinoma subtypes.

Common                                                                                                   Rare                                                                                            Benign
                                                                                                                                                                                                                           
Clear cells                                                                                Bellini’s duct (collector)                                                                  Papillary adenoma
Papillary I and II                                                                            Renal medullary                                                                             Oncocytoma
Chromophobe                                                                  Neoplasia renal cystic multilocular                                                                         
                                                                                         Translocation renal cell carcinoma                                                                         
                                                                                Mucinous tubular and spindle cell carcinoma                                                                
                                                                       Succinate dehydrogenase-deficient renal cell carcinoma                                                       
                                                                                                 Tubulocystic carcinoma                                                                                  
                                                                   Renal cell carcinoma associated with acquired cystic disease                                                   



The pRCC type, subdivided into types 1 and 2, also has
specific genetic characteristics. Type 1 tumors are
characterized by variants in MET gene, a proto-oncogene,
which encodes a cell surface protein for hepatocyte growth
factor, while type 2 tumors are characterized by alterations
in the CDKN2A, SETD2, and FH genes (48). Changes in
PBRM1, BAP1, and SETD2 are also found in the pRCC type
2 subtype, however, in lower frequencies than those
observed in the ccRCC (35, 37, 48). In addition, methylation
patterns have also been associated with subtype 2,
characterizing a more aggressive disease with a lower
survival rate (48).

The molecular characteristics of RCC of the chromophobe
subtype have also been analyzed. Since it is a rare subtype,
the identified alterations presented a lower frequency
(approximately 10%) than those found in other subtypes. The
genes found mutated in these cases were PTEN and TP53.
However, it was also possible to identify alterations in
mTOR, NRAS, and FLCN (variants germline related to
hereditary syndrome). Furthermore, gene fusions with the
gene TERT have been reported frequently in this subtype,
and methylation profiles have been related to a more
aggressive disease (49). Moreover, chromosomal changes are
frequent in this subtype, such as loss of chromosomes Y, 1,
2, 6, 10, 13, 17, and 21 (23). In addition, a previous study
reported that FH, FLNN, SDHB, and SDHD are also linked
to hereditary RCC recurrence (50).

Renal Cell Carcinoma Treatments

RCC tumors have a rounded shape and variable size from few
centimeters to complete occupancy of the abdomen. Small
renal masses that increase over time and show increased
contrast in computed tomography (CT) scans, should be
considered extremely suspicious for renal neoplasms,
although there are many inherent uncertainties (23).
Therefore, the most suitable therapy for cases of localized
disease is total or partial surgical resection of the tumor. Total
resection is performed when the most conservative surgery is
impossible, in cases of locally advanced disease, which
occasionally will require resection of adjacent organs (8).
Although it is an established and well-recognized therapy
approach, studies show a certain heterogeneity between
detected renal masses, where approximately 20% have a
benign profile, 60% are considered indolent tumors, and 20%
potentially aggressive tumors (51, 52). These findings suggest
that a more detailed characterization of these tumors may
contribute to the choice of a less aggressive strategy in certain
cases and intervention surgery in others.

Patients with metastatic disease present a heterogeneous
group. Hence, different initial therapies can be used, and the
most recurrent metastases are found in the lymph nodes,
lungs, bones, and liver (8, 53). Approximately 25% of

patients diagnosed with RCC present with metastasis at
diagnosis and 20-40% will develop metastasis after treatment
of the primary tumor. Patients with metastatic disease have
a survival average of 6 months to 1 year, and less than 20%
of these patients survive more than 2 years (54, 55).

Regarding the prognosis of patients with RCC, therapeutic
strategies such as targeted therapy, inhibitors of tyrosine kinase
and monoclonal antibodies, as well as the age of the patient
and early diagnosis are essential factors for a good prognosis
(56). RCC therapies can be categorized into three groups:
monoclonal antibodies [such as bevacizumab (anti-VEGF) and
nivolumab (anti-PD-1)], tyrosine kinase inhibitor (TKIs)
(sorafenib, sunitinib, pazopanib, axitinib, and cabozantinib),
and mTOR inhibitors (mTORi; temsirolimus and everolimus).
Moreover, further investigations are been carried out to revel
additional target agents, for example, TKIs regorafenib,
cediranib, tivozanib, dovitinib, and lenvatinib (57).

RCC is a vascular tumor that is highly resistant to
chemotherapy and radiotherapy. Some randomized studies
have shown no benefits in using adjunctive systemic
therapies such as interleukin-2 and interferon
immunotherapies alpha (58), radiotherapies, and hormone
treatments in patients with this neoplasm (23). Therefore,
further advances in the understanding of biology of RCC are
required to enable the use of new drugs (targeted therapy) in
patients with RCC, such as therapies that inhibit the VEGF
pathway, mTOR protein inhibitors, and PDGFR. Although
these new therapies have increased overall survival and are
specific to these patients, metastatic disease, in most cases,
is still incurable and requires constant patient follow-up (59).
In this scenario, numerous clinical and preclinical studies
exploring the potential of therapies for the inhibition of
immunological checkpoints have shown that these therapies
can substantially contribute to the survival of patients with
advanced renal neoplasms. These new therapeutic strategies
work by blocking immune checkpoints, which normally
prevent the development of an immune response against
normal cells. This happens because some neoplasms can
acquire these checkpoints, preventing tumor cells from being
recognized by the immune system, and consequently
inactivating the immune cells that can destroy them (60).
Thus, the mechanisms of action of these immune checkpoint
inhibitor therapies involve the removal of inhibitory signal
activation of T cells, which enable tumor cells to overcome
the mechanisms of immune system regulators (61-63). As a
result, immunotherapies with checkpoint inhibitors (anti PD-
1 and anti CTLA-4) are emerging in urologic cancer as
promising treatment options. Clinical studies are ongoing,
and thus far the results show that certain patients have a
good response to treatment; however, more personalized
strategies need to be used to better stratify the patients,
taking into account their clinical and mainly molecular
characteristics (64-67) (Figure 2).
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The most used drugs for the treatment of advanced RCC
are sorafenib, sunitinib, and temsirolimus. Sorafenib, a new
oral small-molecule multikinase inhibitor, inhibits tumor
growth and angiogenesis by targeting the RAF/MEK/ERK
pathway and receptor tyrosine kinases with a response rate of
10%. Sunitinib acts as an antiangiogenic agent, inhibiting
angiogenesis in tumors. This activity is achieved by inhibiting
the receptor of vascular endothelial growth factor (VEGFR),
which in turn inhibits angiogenic growth factors. Temsirolimus
has an anticancer activity acting directly on the mTOR, a key
mediator of tissue growth, proliferation, and angiogenesis, and
its inhibition may also lead to growth reduction and
stabilization, making it an immunosuppressant (58).

RCC tumors are highly infiltrated by immune cells,
especially T cells. Taking advantage of these characteristics
of the microenvironment, immunotherapy has advanced in
the last decade, with VEGF TKIs, and immune checkpoint
blockade. However, they also have other targets, which
explains toxicity and possible additive antitumor effects (59).

Side Effects of Renal Cell Carcinoma Therapies  

Antiangiogenic agents are considered standard therapy for
RCC. Although these therapies are considered inhibitors of
angiogenesis, they also present other mechanisms. This
aspect is important to determine the efficacy and side effects
of the therapy. These therapeutic agents can be divided into
three groups: VEGF, Tyrosine kinases, and mTOR inhibitors
(68).

Bevacizumab, also known as avastin, is a recombinant
human IgG1 monoclonal antibody (MAb) that recognizes all
isoforms of human VEGF and binds to it and prevents VEGF
from binding to VEGF receptors on endothelial cells. This
treatment has demonstrated a range of side effects (68, 69).

Some adverse effects have been associated with these
agents, such as hypertension caused by the decrease in the
production of vasodilator substances, stimulated by VEGF
and VEGFR-2, increasing peripheral vascular resistance.
Proteinuria is another side effect since inhibition of VGFR
affects the glomerular filtration barrier due to its
cytoprotective function of endothelial cells. Regarding
wound healing and bleeding, agents inhibiting VEGF can
affect endothelial turnover in response to trauma and trigger
high clotting, leading to thromboembolic events (68, 69).

Tyrosine kinases participate in the process of growth and
development of cancer through signaling pathways, such as
VEGF. TKIs inhibit the activity of receptor tyrosine kinases
1, 2, and 3; however, it is non-specific, which leads to
enhancement of other receptor tyrosine kinases. Thus, this
treatment affects transmission of multiple signaling
pathways, which leads to a wide range of side effects (70).

The side effects caused by TKIs are manifested according
to the signaling pathway that the TKIs will act on; when the
TKIs affect the VEGF pathway, the side effects are identical to
those of VEGF inhibitors. When they affect other signaling
pathways, the effects can be those observed in Table III (69).

The inhibition of mTOR activity is very important in RCC
therapies because, together with tyrosine kinase receptors,
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mTOR regulates protein biosynthetic pathways that promote
cell growth and angiogenesis. The most used mTOR
therapies are temsirolimus and everolimus (70).

The most observed side effects of mTOR inhibition are
related to metabolic abnormalities such as hyperglycemia,
hypertriglyceridemia, hypercholesterolemia, and hypophospha-
temia. As reported for TKIs, these inhibitors present no
selective profile, they also affect other signaling pathways,
which can lead to side effects similar to those of TKIs. Due to
the great complexity of mTOR-related signaling pathways, the
pathophysiology of side effects caused by these inhibitors is
still not completely clear. However, some side effects can be
explained.

Resistance to Systemic Therapies 
in Renal Cell Carcinoma

Response Evaluation Criteria in Solid Tumors (RECIST) are
criteria used to measure the response to anticancer therapy.
Cancer resistance is determined if RECIST achieves a result
of 20% or more in the sum of some parameters, such as
measurable lesions, the development of new tumors, or an
unequivocal progression of non-measurable disease, for
example, small lung nodules or bone lesions (71).

Two types of cancer resistance to targeted therapeutics can
be found, intrinsic (primary) and acquired (secondary)
resistance. When the therapies immediately fail, the tumor is
classified as intrinsic resistant due to the presence of resistant
cells before the treatment via inherited resistance or
evolutionary clonal selection. However, when cancer cells
resume proliferation after the first regression, during the
treatment, resistance is classified as acquired. Some
resistance pathways have already been revealed (72).
However, more studies should be performed to further
explain these cancer cell strategies to resist therapies. 

A previous study reported some processes associated with
primary resistance in RCCs, such as apoptosis inhibition,
epigenetic modifications of histone proteins, and ATP-binding
cassette (ABC) drug transporters. Primary resistance is also
associated with apoptosis blockage via a rise in B-cell
lymphoma-2 (Bcl-2) and/or Bcl-XL proteins and a decrease in
CD95 expression (73, 74). Moreover, another dysfunctional
pathway that has been associated with primary resistance is
the VEGF pro-angiogenic signaling pathway (75).

Regarding acquired resistance, activation of alternative
pro-angiogenic pathways, resistance mediated by the tumor
microenvironment, increased invasiveness and metastasis,
lysosomal sequestering, single-nucleotide polymorphisms,
and microRNAs play important roles (76).

Studies have reported that 26% of patients treated with
sorafenib and sunitinib exhibit primary resistance to the
treatment. Most of these patients present poor results,
independently of subsequent therapy (77). Besides, some
patients that are susceptible to therapies targeting the VEGF
pathway, frequently develop secondary or acquired resistance
after chronic treatment (Figure 3).

Primary and Acquired Resistance to 
Systemic Therapeutic Agents: 
Acquired Mechanisms

Lysosomal sequestration via TKIs. Reduced influx of TKIs
by RCC is one of the mechanisms of multidrug resistance
(78).  Lysosomal sequestration of TKIs has been shown to
play an important role in cellular adaptation to the
treatment (79). Moreover, TKIs resistance and increased
metastasis can be related to epithelial-to-mesenchymal
transition (80). 

Studies reported that lysosomes have 50 different acid
hydrolases activated by the acidic pH around 4.6 to 5.0,
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Table III. Non-vascular endothelial growth factor (VEGF)-related side effects of VEGF receptor tyrosine kinase inhibitors.

Side effects not related to VEGF                             Pathways                    Physiopathology
                                                                                                                      
Dermatological effects: rash and HFSR           VEGFR, PDGFR             It may interfere with periocyte-mediated endothelial cell survival 
                                                                                                                      mechanisms and lead to capillary endothelial damage in the hands and feet.
Depigmentation of skin and hair                            SCF, c-KIT                  These are important pathways for melanocyte proliferation and 
                                                                                                                      differentiation for pigment production, so inhibitions can lead 
                                                                                                                      to depigmentation.
Cardiac dysfunction                                           VEGFR, PDGFR,            It may inhibit several intracellular pathways involved in cardiac repair, 
                                                                              RAF-1, c-KIT                leading to cardiomyocyte apoptosis and toxicity.
Myelosuppression                                                        VEGF                      Intracellular inhibition affects the VEGF-dependent internal autocrine 
                                                                                                                      cycle which controls hematopoietic stem cell survival.
Hypothyroidism and fatigue                                VEGFR-1 e -2               Through inhibition, the interruption of the synthesis 
                                                                                                                      of thyroid hormones may result.

HFSR: Hand-foot skin reaction; VEGFR: VEGF receptor; PDGFR: receptor platelet-derived growth factor; SCF: stromal cell factor.



which is maintained through the use of vacuolar ATPases.
Since sunitinib is a hydrophobic weak base, it might
favorably accumulate in acidic lysosomes. TKIs are weak
bases, which are sequestered by being trapped in their
protonated form and they do not reach their local target.
Resistance to sunitinib, erlotinib, and pazopanib can be
associated with this mechanism (81). 

Inactivation of Von Hoppel Lindau protein. The inactivation
of VHL proteins triggers over-expression and activation of
receptor tyrosine kinases MET and AXL. Both MET and
AXL signaling pathways have been associated with clinical
resistance to VEGF-targeted therapeutics agents (72). High
levels of MET or AXL oncoproteins are associated with poor
clinical prognosis. Given the fact that MET and AXL up-
regulation present an important role in association with
VEGF for RCC development and progression, agents that are
able to inhibit these molecules can be an excellent strategy
to selective RCC therapy (82).

In addition, the increase in VEGF action is related to the
connection of receptor tyrosine with the angiopoietin 1 and
2 (Ang 1 and Ang 2) pathway (83). HIFs are responsible for
increasing VEGF, interleukins 6 and 8 (IL-6 and IL-8),
hepatocyte growth factor (HGFR/C-MET), fibroblast growth
factor (FGF2) and some other growth factors (72, 83). IL-6
and IL-8 also have an important role in tumor angiogenesis,
and their levels are increased during treatment with sunitinib
and pazopanib. The activation of chemokine receptor 2
contributes to the transcription and translation of VEGF

mRNA leading to increased levels of VEGF protein, which
activates VEGFR-2 in an autocrine manner (84).

Increased invasiveness and metastasis via angiogenic switch.
Some studies have reported that alterations in genes
associated with angiogenesis and the rise in pericyte
coverage of tumor vessels result in the recruitment of pro-
angiogenic inflammatory cells from the bone marrow and
metastatic activity in RCC (75). 

Moreover, studies have shown that the use of sunitinib
facilitates the formation of tubules and the proliferation of
endothelial cells through FGF. This growth factor also
activates alternative pathways such as MAPK, ERK, PI3K,
and AKT (84).

Antiangiogenic mechanisms are up-regulated by hypoxia-
inducible factors and correlate with poor prognosis and
resistance to VEGF receptor inhibitors in preclinical models
of RCC and other cancers (82, 85). Besides, RCC cells
express HLA-G and HLA-E on their surface that decrease
the immune response and promote early tolerance (86).

Growth increase via alternative pathways activation. A study
reported some molecular patterns associated with primary
resistance in ccRCCs, such as the absence of HIF-α protein
and wild-type VHL alleles; VHL-deficient tumors, expressing
detectable HIF-1α and HIF-2α; and VHL-deficient tumors
expressing HIF-2α exclusively (87). Wild-type tumors and
those that expressed both HIF-1α and HIF-2α showed an
increase in AKT/mTOR and MAPK pathways and were more
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Figure 3. Renal cell carcinoma primary (A) and acquired (B) resistance. 



sensitive to TKI. In contrast, tumors that expressed only HIF-
2α showed increased c-Myc activity, triggering proliferation
and increased resistance. These results suggest that HIF-1α
and HIF-2α activate distinct oncogenes in ccRCC (87). 

Studies reported that loss of PTEN is correlated with
sunitinib resistance in renal cells. However, the up-regulation
of PTEN or the inhibition of AKT/mTOR pathway increases
the response of PTEN-deficient ccRCC cells to sunitinib via
apoptosis activation (88). Moreover, PTEN down-regulation
is associated with poor sensitivity to bevacizumab (89).

ATP-binding cassette (ABC) efflux transporters. Membrane
structures were associated with multidrug resistance, for
example, ATP-binding cassette (ABC) drug transporters [P-
glycoprotein (Pgp, ABCB1), and multidrug resistance
associated protein (MRP) 1 (ABCC1)] (90).

Alterations in gene expression levels. The action of histone
deacetylases and methyltransferases, enzymes that control
epigenetic modifications, have been reported to be modified
in RCC (37). Histone methyltransferase EZH2 over-expression
is associated with tumor angiogenesis via blocking anti-
angiogenic factors by promoter gene methylation, causing low
response to sunitinib (91).

Tumoral heterogeneity. Heterogeneity can be found even
among cells in the same tumor, including variations in gene,
microRNA, and protein expression (89). For example, post-
sunitinib metastatic lesions show FLT4, KMT2D, and BMP5
mutations, which were not found in the primary tumor (92).  

Previous studies reported that after treatment with
sorafenib, RCC cancer cells developed mutations and
morphologic heterogeneity compared to untreated subjects
(93). Moreover, studies suggest that VEGF-targeted therapy
can induce polyclonal outgrowth of tumor cell subclones that
can result in poor treatment response (93).

Tumor microenvironment. The tumor microenvironment is
composed of tumor cells, extracellular matrix (ECM),
signaling molecules, and stromal cells, such fibroblasts,
vascular endothelial cells, pericytes, and immune cells.
Myeloid-derived suppressor cells (MDSCs) are significantly
found in the tumor microenvironment since they are potent
immunosuppressors. Due to this fact, MDSCs are highly
recruited by tumors to trigger low response to anti-angiogenic
drugs via increasing pro-angiogenic factors that can activate
VEGF-independent angiogenesis (94).

It has been shown that patients that received sunitinib
treatment presented a reduction in MDSCs in peripheral
blood; on the other hand, the tumor tissue did not show a
decrease in MDSCs (95). Moreover, pericytes, which are
considered stromal cells, are also involved in aberrant tumor
angiogenesis and drug resistance.

Resistance mediated by the action of microRNAs. RCC can
exhibit different patterns of miRNA expression that can
result in therapy resistance. Sunitinib-resistant RCC tumors
present an increase in the expression of miRNA-942,
miRNA-133a, miRNA-628-5p, and miRNA-484 when
compared to sunitinib-sensitive tumors. 

The up-regulation of miRNA-942 in an mRCC cell line can
increase the production of MMP-9 and VEGF that result in
the migration of endothelial cells and sunitinib resistance (96). 

Adjuvant Therapies to Improve RCC Treatment 
Focus on Natural Products 

Even though many multidrug resistance mechanisms already
have been reported in RCC, studies focusing on new
biomarkers as well as selected antitumor therapies with no
or low side effects and more effective are very important.

Currently, the standard therapy for RCC is partial
nephrectomy (97). Alternative treatment options are
available, such as stereotactic body radiotherapy, microwave
ablation, cryoablation, radiofrequency ablation, and active
surveillance (98). Unfortunately, there is no adjuvant
treatment for RCC. However, investigations in this field are
very important, due to the fact that the 5-year relapse rate for
intermediate- and high-risk early-stage RCC is 30% to 40%
(99). Metastatic RCC can be treated successfully with
immune therapy and targeted therapy (100). Pazopanib and
sunitinib are currently the standard first-line treatment for
metastatic RCC, both with similar efficacy, although the
safety profile favors the use of pazopanib (101). Various
adjuvant trials with immune therapy have been conducted.
However, they reported no benefit in disease-free survival,
and clinical trials with targeted agents have not reported
results yet (102). Taking this into account, new treatments
against RCC that present a selective profile and are more
effective should be developed. Thus, some natural products
that exhibit several bioactivities have been investigated in
this area. 

Honey

Previous studies have indicated that honey may have
antitumor activity in human renal carcinoma cell lines
(ACHN), mainly by activating apoptosis (103).
Samarghandian et al. (104) reported that treatment of ACHN
cells with different concentrations of honey for three days
decreased cell viability in a concentration and time-dependent
manner. The IC50 values of honey against the ACHN cell
lines were 1.7±0.04% and 2.1±0.03% μg/ml after two and
three days post treatment, respectively. However, further
studies are necessary to understand the exact molecular
mechanism behind the antitumor activity of honey in this
context.
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Epigallocatechin-3-gallate (EGCG)

Epigallocatechin-3-gallate (EGCG), a component derived
from Camellia sinensis (green tea) that is also found in
apple, shows cytotoxic effects in RCC; it inhibited tumor
growth and invasiveness in RCC by up-regulating expression
of TFPI-2 through inhibition of DNA methyltransferase
(DNMT) activity (105). Additional studies indicated that
EGCG sensitized human 786-0 renal cell carcinoma cell
lines to apoptosis by down-regulating c-FLIP, Mcl-1, and
Bcl-2 proteins in a caspase-dependent pathway, while
inhibited proliferation and migration of these cells by down-
regulating matrix metalloproteinase-2 and matrix
metalloproteinase-9 (106, 107). 

Curcumin

Curcumin, (1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)
hepta-1,6-diene-3,5-dione, is the primary bioactive substance
found in turmeric (Curcuma longa). This molecule presents
anti-cancer effects in melanoma cell lines and RCC by
inhibition of Signal transducer and activator of transcription
3 (STAT3) phosphorylation with specificity for the Jak-2-
STAT3 pathway (108). Several studies also showed that
curcumin promoted apoptosis in vitro in various human
cancer cell lines, including RCC (26, 109, 110), by
decreasing activation of the PI3K/AKT signaling pathway.
Besides apoptosis, curcumin can also inhibit the proliferation
of RCC and activate autophagy via Akt/mTOR suppression
and beclin-1 activation (111).

Resveratrol

Resveratrol, (trans-3,5,4’-trihydroxystilbene), a polyphenolic
compound found in grapes, can induce apoptosis and cell
cycle arrest, and inhibit proliferation of RCC via JAK-1, c-
Src, and STAT3/5 over-expression and PTPε and SHP-2
tyrosine phosphatase activation (112). Other findings suggest

that resveratrol induces differential expression of genes that
are related to the inhibition of RCC cell growth and
induction of RCC cell death, and these effects depend
directly on resveratrol concentration (113). Resveratrol also
seems to have inhibitory effects on the expression of VEGF
gene and the proliferation of RCC cells (786-0) (83).

Englerin A

Englerin A is a compound derived from the Phyllanthus
engleri, a Southern Africa native tree known to have
medicinal properties (114). It has been shown that Englerin
A induces cell death in RCC via induction of apoptosis,
inhibition of cell migration, activation of autophagy, and cell
cycle arrest by PI3/AKT/ERK inhibition and PKCθ activation
(115, 116). The main mechanism of action of this compound
is through activation of canonical transient receptor potential
channels (TRPCs, especially TRPC4 and TRPC5), which are
found in the membranes of renal cells (117). Englerin A acts
on these channels, elevates the intracellular concentration of
calcium, and induces cell death (118). Englerin A can also
prevent the migration and invasion of RCC cells by TGF-β1
transformation (119). Studies investigating the in vivo effects
of Englerin A have not been conducted yet, however, trials
on mouse models suggest that the levels of this compound
needed for anti-tumor effects may be fatal (120).

Despite of the many treatment options currently available,
RCC is still one of the deadliest forms of cancer, which
demonstrates a great need for new drugs that are effective
against this disease. After reviewing the scientific literature
on the subject, it is understood that there are bioactive
natural products with anti-tumor effects in RCC, acting
through mechanisms such as induction of apoptosis,
inhibition of tumor growth, and activation of autophagy
(Table IV). Therefore, it is evident that natural products may
have a broad range of potential applications in the future;
however, more clinical studies regarding these molecules are
necessary.
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Table IV. Overview of the main natural products with anticancer effects in renal cell carcinoma.

Natural product                                                              Source                            Anti-tumor effect

Honey                                                                              Bees                              Induction of apoptosis
Epigallocatechin-3-gallate (EGCG)          Green Tea (Camellia sinensis)         Inhibition of tumor growth and invasiveness via TFPI-2↑. 
                                                                                                                               Induction of apoptosis via c-FLIP↓, Mcl-1↓ and Bcl-2↓.
Curcumin                                                       Turmeric (Curcuma longa)            Inhibition of cancer cells proliferation via STAT3↓, Akt/mTOR↓ and 
                                                                                                                               beclin-1↑. Induction of apoptosis via PI3K/Akt↓.
Resveratrol                                                                     Grapes                            Induction of apoptosis, cell cycle arrest and inhibition of cancer cells
                                                                                                                               proliferation via JAK-1↓, C-Src↓, STAT3/5↓, PTPε↑ and SHP-2↑.
Englerin A                                                           Phyllanthus engleri                  Induction of apoptosis, inhibition of cell migration, activation of 
                                                                                                                               autophagy and cell cycle arrest via PI3/Akt/ERK↓ and PKCθ↑.



Nanoparticles Can Enhance Renal 
Cell Carcinoma Treatment 

Nanotechnology and nanoscience are fundamentally related
regarding to develop new materials and devices with improved
properties in a nanometric scale between 1 and 100 nm (121,
122). At this size, their proprieties and characteristics are
distinct from their bulk form mostly due to the surface and
quantum confinement effects (123). The effects related to the
surface properties are  associated with the increase in the
area/volume ratio, which can enhance the specific area and
porosity (124). Besides, quantum confinement is involved in
the optical and electronic characteristics (125).

Diverse nanomaterials have been developed and improved
to increase the performance in different applications. The
unique properties and characteristics of nanomaterials (NMs)
and nanoparticles (NPs) make them excellent agents for
application in different areas, such as water remediation
(126, 127), medicine (128, 129), development of sensors
(130), drug delivery (131), and cancer treatment (132).
Figure 4 shows some characteristics of nanoparticles.

Nanoparticles, due to their extraordinary ability to co-
encapsulate different therapeutic agents, can also be employed
to overcome drug resistance in cancer. Nanoparticles have
excellent properties, such as reactive and surface area, that can
be used to improve the interactions between drugs and cells
as well as overcome cancer resistance. In support, NPs
showed benefits in cancer therapy: greater pharmacokinetics,
precise targeting, and reduced side effects (133). For instance,
polymeric nanoparticles (NPs) have been extensively studied
due their physico-chemical properties allowing encapsulation
of known drugs. Biocompatible polymers are used mostly for
their ability to transport drugs directly to the targeted tissue
through surface modifications (134). Also, micelles are
suitable as a template to incorporate gold NPs, regulating their
sizes with a pH-sensitive triblock copolymer micelle, i.e.,

bringing relevant applications to circumvent drug resistance
by acting in biological processes such as ion transport and
targeted drug delivery (135). It is well-known that
conventional therapies have several drawbacks relating to their
efficacy and side effects, such as damage in healthy cells and
tissues. In this manner, the size and shape furnished by the
nanotechnology, allows a decrease in the oxidative stress and
delivery of the drug to the target organ/tissue (136).

RCC is fundamentally originated from the renal cortex
and presents a high metastatic rate (137). Nevertheless, due
to the side effects of cancer treatment, such as nausea and
blood clots, new research develops alternatives to improve
the treatment efficiency and appease the effects (138). NPs
are an excellent alternative for cancer cell treatment due to
the improvement in the pharmacokinetics and reduction of
toxicities of chemotherapies (133) (Figure 5).

Magnetic nanoparticles (MNPs), such as magnetite (Fe3O4)
and hematite (Fe2O3), are widely used in different areas due
to their excellent properties: biocompatibility, reactivity, and
high surface area (139). To evaluate the anticarcinogenic
activity of nanoparticles, Abbas and co-workers (140)
synthesized an α-Fe2O3 (NPLAA@IONP-PEG) employing
polyethylene glycol (PEG) and ascorbic acid (LAA), and
tested it against the HEK-293 human embryonic kidney cell
line. LAA@IONP-PEG decreased cell viability in a dose-
dependent manner. The high cytotoxicity against cancer cells
of the nanocomposite was attributed to the small size and the
presence of PEG and LAA (141). It was shown that
LAA@IONP-PEG presents an antioxidant capability.

Furthermore, Nagajyothi et al. (142) synthesized iron
oxide NPs (α-Fe2O3) and analyzed their catalytic and
anticancer behavior. The in vitro experiments indicated that
α-Fe2O3 inhibited the growth of the RCC line Caki-2in a
dose-dependent manner. However, only the highest
concentration (0.8 mg ml–1) (Figure 6) showed a cytotoxic
effect on normal cells.
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Figure 4. Nanoparticles and nanomaterials.



Inorganic nanoparticles, such silver (AgNPs) and gold
(AuNPs) nanoparticles, are an important alternative employed
in cell treatments due to their excellent properties, such as
antibacterial and antimicrobial activities (143, 144). Chen and
coauthors (135) reported the mechanisms and toxicity effects
of AgNPs against HEK293T and A498 cell lines. The results
showed that low concentrations (1-8 μg ml–1) had no
significant effect on cell viability and ROS production
compared to the untreated control. However, AgNPs
increased autophagy even at low concentrations; increasing
the LC3II level and autophagy-associated genes.

Inorganic nanoparticles are also a viable alternative for
gene delivery. Shi et al. (2020) developed a polyethylene
glycol modified with manganese dioxide (PEG-MnO2),
which they loaded with osteopontin siRNA, as the gene drug
(siRNA OPN) (PEG-MnO2-OPN siRNA), and used for
magnetic resonance imaging (MRI) for guided gene delivery
(145). In vitro assays demonstrated that the PEG-MnO2 was
cytotoxic against the RCC line 786-O and umbilical vein EA
hy926 cell line. Furthermore, contrast of MRI showed that
the nanocomposite resulted in a significant improvement,

even at low concentrations, due to the presence of Mn2+ ions
and the anti-tumor effect of nanoparticles. Nonetheless, Chai
and co-authors (146) synthesized folate grafted PEI600-CyD
(H1) nanoparticles for the delivery of AIM2 gene
(H1/pAIM2) for renal carcinoma cell treatment (786-O and
OSRC-2). The nanocomposite significantly decreased tumor
volume and weight. The in vitro results showed that the NPs
enhanced the effect of AIM2 against cancer cell lines,
decreasing cell migration and invasion. 

Soliman and co-workers (147) synthesized NPs with
succinyl chloride (SC) and loaded them with gemcitabine (GT)
and 5-Fluoracil (5FU), called GT-SC-5FU. In vitro experiments
showed that GT-SC-5FU significantly decreased the viability
of the RCC line SNU-349 in a dose-dependent manner.
Nonetheless, GT-SC-5FU presented higher cytotoxicity when
compared to individual drugs (GT and 5FU), suggesting a drug
synergistic effect in the SNU-349 cell line. 

Green synthesis can be used to produce high quality
inorganic nanoparticles with good yields (148). Along with
this, biological synthesis (green approaches) of metal NPs
are an excellent alterative to produce ecological and
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Figure 6. Toxicity of α-Fe2O3 against normal and renal carcinoma cells.

Figure 5. Nanoparticles for cancer cell treatment.



environmentally friendly nanomaterials with diverse benefits
(149). Liu et al. (150) used an easy and green technique for
development of gold nanoparticles, Curcuma wenyujin
extraction, which was called CWAuNP. Treatment of the
RCC lines A498 and Sw-156 increasing concentrations of
gold nanoparticles (5-50 μg/ml) significantly decreased cell
viability. In addition, the production of reactive oxygen
species (ROS) increased and the mitochondrial membrane
potential decreased.

Furthermore, Li and co-workers (151) synthesized copper
nanoparticles (Cu-NPs) using the medicinal plant Ziziphus
zizyphus (Cu-ZZ NPs) and evaluated the anti-cancer activity
against A498 cells. Cu-ZZ NPs significantly decreased
viability and increased mitochondrial membrane potential
(MMP) in a concentration dependent manner (10-50 μg
ml–1). These results suggest that Cu-ZZ NPs has a dose-
dependent anti-tumor activity due to the DNA damage.

Considering their excellent characteristic, zinc oxide
nanoparticles (ZnO-NPs) produced through a green synthesis
approach can be used in different applications (152).
Lokapur and co-workers (153) evaluated the toxicity of ZnO-
NPs produced using Holigarna grahamii (HG) against the
A498 cell line. The results showed that by increasing the
concentration of nanoparticles the cytotoxicity effect
increased and cell viability decreased to approximately 50%.
Nevertheless, no significant toxicity was observed against
health cells. 

Zhou and Chen (154) developed supramolecular
nanoparticles with cisplatin (CIS-PT-NPs) and evaluated
their anticancer properties, such as antiproliferative activity
and toxicity, against the RCC lines Caki-1 and A498 and
compared them to those of CIS-PT (no nanometric material).
MTT assay showed a higher cytotoxic activity of CIS-PT-
NPs in comparison to CIS-PT; treatment resulted in a
significant and dose-dependent decrease in cell viability.
However, none of the materials (CIS-PT and CIS-PT-NPs)
presented toxicity against non-cancerous cells (NIH-3T3).
The drug release profile showed that CIS-PT liberate the
drug faster than the nanoparticles (90% after 25 h). However,
the kinetic baum profile of CIS-PT-NPs demonstrated a
continuous drug release, enhancing cancer treatment.

Conclusion

In conclusion, RCC present increased incidence and mortality
rates. This can be because this type of cancer frequently
exhibits resistance to treatment. Furthermore, most anticancer
agents used to treat RCC have side effects, since they present
a non-selective profile. In this scenario, studies have been
performed to reveal new therapies with low or null side
effects. Nanoscience and natural products can be highlighted
in this area. However, further clinical studies regarding these
new RCC anticancer agents are necessary.
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