CANCER DIAGNOSIS & PROGNOSIS

3: 169-174 (2023)

Review

doi: 10.21873/cdp.10197

DNA Mismatch Repair System Imbalances

in Breast Adenocarcinoma

GEORGIOS 1. METAXAS!, EVANGELOS TSIAMBAS?2, SPYRIDON MARINOPOULOS',
MARIA ADAMOPOULOU3, DESPOINA SPYROPOULOU*, EVANGELOS FALIDAS?,
DIMITRIOS DAVRIS®, LOUKAS MANAIOS®, PANAGIOTIS FOTIADES’,

SOFIANIKI MASTRONIKOLI®, DIMITRIOS PESCHOS® and CONSTANTINE DIMITRAKAKIS!

!Breast Unit, 1*' Department of Obstetrics and Gynaecology, Alexandra

Hospital, National and Kapodistrian University of Athens, Athens, Greece;

2Department of Cytology, 417 VA (NIMTS) Hospital, Athens, Greece;

’Department of Education, Molecular Lab, Deere American College of Greece (AGC), Athens, Greece;
*Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece;
>Department of Surgery, Halkida General Hospital, Halkida, Greece;

SDepartment of Surgery, Bioclinic Medical Center, Athens, Greece;

’Department of Surgery, 424 Army Hospital, Thessaloniki, Greece;

8Brighton and Sussex Medical School, Brighton, U K ;

9Department of Physiology, School of Medicine, University of loannina, Ioannina, Greece

Abstract. DNA mismatch repair system (MMR) is
considered a leading genetic mechanism in stabilizing DNA
structure and maintaining its function. DNA MMR is a highly
conserved system in bacteria, prokaryotic, and eukaryotic
cells, and provides the highest protection to DNA by repairing
micro-structural alterations. DNA MMR proteins are involved
in the detection and repair of intra-nucleotide base-to-base
errors inside the complementary DNA strand recognizing the
recently synthesized strand from the parental template.
During DNA replication, a spectrum of errors including base
insertion, deletion, and miss-incorporation negatively affect
the molecule’s structure and its functional stability. A broad
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spectrum of genomic alterations such as promoter hyper
methylation, mutation, and loss of heterozygosity (LOH) in
MMR genes including predominantly hMLHI, hMSH?2,
hMSH3, hMSH6, hPMS1, and hPMS?2 lead to their loss of
base-to-base error repairing procedure. Microsatellite
instability (MSI) refers to the DNA MMR gene alterations
that are observed in a variety of malignancies of different
histological origins. In the current review, we present the role
of DNA MMR deficiency in breast adenocarcinoma, a leading
cancer-based cause of death in females worldwide.

Breast cancer (BrCa) is the prominent type of cancer in
females worldwide and the second leading cause of cancer-
related death, behind lung carcinoma (1). Concerning
pathology categorization, primary breast carcinoma
demonstrates a variety of types including ductal, lobular,
medullary, mucinous, adenoid cystic, and papillary correlated
to medium or high metastatic potential (2). Regarding its
etiology, several socio-demographic and genetic risk factors
(i.e., age, chronic smoking, and alcohol consumption), ovarian
hormone over-expression/exposure to drug diethylstilbestrol
(DES) or radiation therapy, combined or not with reproductive
history and potential family history (inherent gene mutations)
have been proposed to be involved in its development (3, 4).
Additionally, BrCa is characterized by genetic diversity and
epigenetic heterogeneity (5, 6). Specifically, altered expression
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of crucial molecules such as estrogen (ER) and progesterone
(PR) receptors, HER2/neu, ki-67 proliferation marker, and p53
suppressor gene is detected (7). For this reason, BrCa
categorization based on these proteins is critical for optimal
oncological handling by designing and applying specific
targeted and chemotherapeutic regimens. Besides them, new
immunotherapy strategies are applied alone or in combination
with radiotherapy (8, 9). HER2/ER/PR gene expression
signatures are critical for the development of sporadic BrCa,
whereas BrCa genes, such as BRCAI/2, are involved in
hereditary/familial cases (10, 11). Interestingly, other genetic
micro-markers include microsatellite instability (MSI), which
refers to specific DNA mismatch repair (MMR) genes that are
responsible for the detection and repair of nucleotide
dissimilarities in the DNA (12). MSI is detected in a variety
of malignancies independently of their histological origin (13).
In the current molecular review, we describe the function and
the role of DNA MMR deficiency in BrCa.

DNA Mismatch Repair System (DNA MMR):
Landscape and Mechanisms

DNA is characterized by a high — level structural stability
that secures its multiple normal functions. There are different
genetic mechanisms that provide a stable micro-environment
inside the molecule including DNA MMR, which plays a
leading role. DNA MMR is a highly conserved and efficient
system in a series of prokaryotic and eukaryotic cells (14).
The ability of the corresponding genes to detect and repair
DNA base errors is crucial for its homeostasis. The MMR
system distinguishes the newly synthesized DNA strand from
the parental, which is used as a template. A broad spectrum
of intra-nucleotide errors such as base deletion, insertion, and
mis-incorporation occur during DNA replication and
recombination. Concerning mismatches, they are implicated
in a base tautomerization process that takes place in the G2
phase. G/T or A/C pairing that represents frequently detected
base abnormalities is repaired by firstly recognizing the
deformity, focal excision of the invalid base, and its
replacement with the appropriate one. In fact, a significant
number of bases (extended to hundreds or thousands of
pairs) must be excised from the newly synthesized DNA
strand in comparison to the initial template for preventing
inappropriate base matching (15).

Significant human DNA MMR gene homologues
including MLHI, MSH2, MSH3, GTBP/MSH6, PMS1, and
PMS2 are located on chromosomes 2, 3, 5, and 7.
Furthermore, PCNA, RPA, HMGBI, RFC DNA ligase I, and
DNA polymerase delta genes are implicated in DNA
structural stability and function, interacting with histone and
chromatin domains. Specific genomic alterations such as
germline mutations, usually accompanied by allelic loss (loss
of heterozygosity-LOH), or epigenetic changes including
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promoter hypermethylation lead to loss of the expression of
MMR genes. For this reason, base errors are not repaired
(16). Inherited as well as acquired deficiencies in DNA
MMR genes lead to MSI, a genetic phenomenon frequently
detected in hereditary (familial) and sporadic colorectal
carcinoma (CRC) types.

Microsatellites correspond to nucleotide sequences of 1 to
5 base pairs that are repeated typically 15-30 times and
characterized by instability. Based on extensive genetic
analyses, thousands of them are detectable throughout the
human genome. During DNA replication, an increased
microsatellite number is responsible for the formation of
small loops in any of the two DNA strands (17, 18). The
introns of genes demonstrate a variety of inserted or deleted
microsatellites. MSI is used as a very promising, novel
biomarker for detecting DNA MMR deficiency in colorectal
carcinomas CRCs. Additionally, MSI is detected in a broad
spectrum of malignancies characterized by different histo-
genetic origin (19). In the current review we focused on
DNA MMR deficiency in lung and oral cavity carcinomas to
identify mechanistic similarities and differences.

DNA MMR Alterations in BrCa

Alterations or different variants in DNA MMR genes are
correlated with an elevated risk for BrCa development. A study
group explored the role of specific MSH2 variants in women
without BRCAI/BRCA2 gene mutations (20). They detected a
combination of two mutations (p. Ala272Val and p. Met592Val)
and designated them as potentially pathogenic in sub-groups of
patients. They also suggested these two MSH2 gene variants to
be analyzed as early genetic biomarkers in women with a family
history of BrCa. Additionally, the involvement of MSH2 in
neoplastic transformation of the breast epithelia is under
investigation. A study group -focused on MSH2 function and
interactions- analyzed the formation of the MutSo/MutSf3
complex in the cytoplasm and nucleus (21). They reported a
higher nuclear/cytoplasmic K ratio for MutSo during
progression from normal to cancerous cells. For this reason,
they proposed MutSa elevated expression as a sensitive
biochemical marker for early prediction of BrCa. Furthermore,
increased MSH2 protein expression levels have been identified
in the mononuclear fraction of the peripheral blood of BrCa
patients (22). A study group detected high MSH2 expression in
BrCa tissue sections in patients with increased mononuclear
concentration associated also with lymph node metastasis. DNA
MMR deficiency in familial/hereditary BrCa is correlated to
specific single nucleotide polymorphisms (SNPs). A molecular
analysis revealed two genetic alterations, MUTYH_rs3219489
and MSH2_rs2303428 variant alleles, which are associated with
increased BrCa prevalence (23). Similarly, another study co-
analyzed the potential impact of MMR genes (MLHI, MSH,
and MSH3) on BrCa incidence as crucial genetic predisposition
factors (24). They observed that XPC-Ala499Val, XPF-
Arg415GIn, XPG-Asp1104His, and MLH1-11e219Val SNPs in
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MSH2 and MLHI increased BrCa risk. Concerning the
correlation between DNA MMR gene alterations and the
histological origin of malignancies, a study analyzed the role of
variations in MLHI, MSH2, and MSH6 in cancerous tissues
derived from the colon, breast, ovaries, endometrium, and
thyroid (25). They observed that MSH6 mutations followed by
mutations in MLHI, MSH2 demonstrated the highest incidence
in breast carcinomas. Additionally, germline monoallelic
mutations in MSH6 and MHS2 were associated with inherited
breast-ovarian carcinoma.

Estrogen/progesterone positive BrCas represent a specific
category and the impact of DNA MMR gene mutations is
under investigation. A study explored the potential usefulness
of MMR gene testing in these tumors (26). Similarly, another
study group applied a DNA MMR gene panel (MLHI, MSH2,
MSH6, and PMS2) in familial BrCa cases. They detected
eight pathogenic variants in the examined genes (27).
Furthermore, MMR-deficient BrCas demonstrated resistance
to specific chemotherapeutic agents such as aromatase
inhibitors, but sensitivity to others (i.e., palbociclib) (28, 29).
A study group showed that MMR-deficient cases
characterized by MSH2, MSH6, MLHI, and PMS?2 loss of
expression are eligible for an alternative treatment protocol
based on CDK4 inhibitors (30). In conjunction, MMR-
deficiency combined or not with epigenetic silencing of the
gene O6-alkylguanine-DNA methyltransferase (MGMT) and
BRCAI/2 gene mutations seem to negatively affect the
response rates to specific chemotherapeutic agents in sporadic
and hereditary BrCas (31). In BrCa cases related to Lynch
syndrome (LS), especially in the triple-negative ones, the
frequency and impact of DNA MMR deficiency is under
investigation. LS is an autosomal dominantly inherited
disorder derived from germline mutations in DNA MMR
genes. A study group analyzing a significant number of them
observed increased MSI and MLHI  promoter
hypermethylation (32). Two studies showed higher DNA
MMR deficiency in BrCa mutation carriers than in non-
carriers (33, 34). Additionally, the involvement of germline
mutations in DNA MMR genes in LS cases was the subject
of another molecular study. By applying targeted next-
generation sequencing (TNGS), a study group explored the
mutational profile of MLHI, MSH2, MSH6, EPCAM, and
PMS?2 genes. They reported a high frequency of mutations in
these genes in hereditary BrCa cases (35). Interestingly,
another study analyzed LS-BrCa cases in a specific female
population (Japanese) and observed a high MSI, especially in
ER/PR+/HER2- cases (36). Besides LS-depended BrCa cases,
carcinomas that demonstrate inactivation of critical
suppressor genes - including phosphatase and tensin homolog
(PTEN)- also involve DNA MMR deficiency (37, 38). A
study group -based on this observation- formed a diagnostic
algorithm to evaluate PTEN expression in MMR positive
BrCas. Furthermore, specific MLHI gene polymorphisms
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(rs63749795 and rs63749820) lead to MLH1 down-regulation
and expression loss correlated to a high risk of BrCa onset
(39). Concerning alternative molecules and mechanisms that
are implicated in DNA repair, ubiquitination mediated by the
ubiquitin-conjugating enzyme E2W (UBE2W) plays a major
role in carcinomas including breast (40). A study group
reported high UBE2W expression in patients with DNA
MMR deficiency and suggested the molecule as a potential
reliable biomarker for immune infiltration.

DNA MMR Deficiency in BrCa
Immunotherapy Strategies

A variety of targeted therapies — monoclonal antibodies (mAbs)
and tyrosine-kinase inhibitors (TKIs), which disrupt signal
transduction pathways — have been applied in BrCa patients
(41, 42). Besides them, novel immune checkpoint inhibitors
that regulate immune system function are considered very
promising agents (43). Programmed cell death-1 (PD-I) gene
- located on chromosome 2 (gene locus: 2q37.3) - encodes a
cell surface membrane protein of the immunoglobulin super-
family, which acts as an immune-inhibitory receptor implicated
in tumor immune escape (44). PD-1 interacts with two
potential ligands, PD-L1 and PD-L2 trans-membrane proteins
(45). Programmed cell death ligand-1 (PD-L1), also known as
CD274 (cytogenetic band: 9p24.1), is expressed in epithelial
and hematopoietic cells as well as in thymus gland
parenchyma. Furthermore, dendritic cells express PD-L1
modifying self-reactive T cell function. The PD-1/PD-L1
system promotes inhibition of T lymphocyte proliferation,
survival, and cytokine release. Additionally, it induces tumor-
specific T-dependent apoptosis and CD4*T cell differentiation.
In fact, it enhances the resistance of tumor cells to cytotoxic T
lymphocyte (CTL) lineage attack. PD-L1 over-expression
induces inflammation in malignancies. Malignant cells also
escape the host immune system by PD-L1 — mediated
suppression of T cell activation (46).

The role of DNA MMR deficiency in anti-PD-L1
immunotherapy strategies is a novel and interesting field for
research in BrCa (47). A study group reported low levels of
MLH1 and PMS2 protein expression  without
hypermethylation of MLHI gene promoter (48). Because a
low MMR deficiency rate was detected in the examined
malignancies, they did not propose a routine screening in
these patients. Similarly, another study showed a few LS
BrCa cases characterized by MMR deficiency, but one of
them demonstrated strong response to anti-PD1 therapy (49).
Another study group investigated the correlation between
MMR-deficiency and PD-L1 in BrCa cases (50). They
detected sub-groups of patients with complete or partial loss
of MMR and/or high tumor-infiltrating lymphocytes TILs
especially in triple-negative BrCas that were considered
eligible for immunotherapy. Additionally, a series of studies
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explored the impact of DNA MMR deficiency and MSI rates
on PD-L1 expression in BrCas (51-54). They reported
absence of DNA MMR deficiency and MSI in the examined
cases, whereas PD-L1 positivity was prominent in TILs. In
addition to these observations, other studies identified
extremely low frequency of MSI in these malignancies with
loss of MLH1/PMS2 proteins. They also concluded that in
high-level TIL BrCas, MSI-H was absent. Furthermore,
another study group focused on the role of potential germline
mutations in MMR genes in the development of LS-related
BrCa. They detected specific mutational signatures in DNA
MMR genes correlated to PD-L1 positive cases (54).

In conclusion, a broad spectrum of genomic alterations
such as promoter hyper methylation, mutations, and LOH in
the MMR genes including predominantly hkMLHI, hMSH?2,
hMSH3, hMSH6, hPMS1, and hPMS2 have been detected in
BrCas. These alterations create specific MSI/MMR genetic
signatures in subgroups of patients affecting potentially the
response rates to targeted/immuno-therapeutic regimens.
Understanding the nature and mechanisms of DNA MMR
deficiency in BrCa cases, is a very interesting, significant,
and promising field in BrCa molecular oncology.
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