
Abstract. Background/Aim: Breast cancer is a leading
worldwide cause of female cancer-related morbidity and
mortality. Since molecular characteristics increasingly guide
disease management, demystifying breast tumor miRNA
signature emerges as an essential step toward personalized
care. This study aimed to investigate the variations in
circulating miRNA expression profiles between breast cancer
subtypes and healthy controls and to identify relevant target
genes and molecular functions. Materials and Methods:
MiRNA expression was tested by miScript™ miRNA PCR
Array Human Cancer Pathway Finder kit, and subsequently,
a machine learning approach was applied for miRNA profiling
of the various breast cancer molecular subtypes. Results:
Serum samples from patients with primary breast cancer
(n=66) and healthy controls (n=16) were analyzed. MiR-21
was the single common molecule among all breast cancer
subtypes. Furthermore, several miRNAs were found to be
differentially expressed explicitly in the different subtypes;

luminal A (miR-23b, miR-142, miR-29a, miR-181d, miR-16,
miR-29b, miR-155, miR-181c), luminal B (miR-148a, let-7d,
miR-92a, miR-34c, let-7b, miR-15a), HER2+ (miR-125b, miR-
134, miR-98, miR-143, miR-138, miR-135b) and triple
negative breast cancer (miR-17, miR-150, miR-210, miR-372,
let-7f, miR-191, miR-133b, miR-146b, miR-7). Finally,
miRNA-associated target genes and molecular functions were
identified. Conclusion: Applying a machine learning approach
to delineate miRNA signatures of various breast cancer
molecular subtypes allows further understanding of molecular
disease characteristics that can prove clinically relevant.

Breast cancer (BC) is a leading cause of cancer-related
morbidity and mortality, affecting 1 in 8 women and
accounting for approximately 15% of all cancer-related
deaths among females worldwide (1). Optimal disease
outcomes are inextricably linked to early diagnosis,
highlighting the need for the wide implementation of
screening programs and the development of new sensitive
biomarkers without the limited sensitivity of the currently
available imaging modalities (2). One of the main challenges
is the heterogeneity of the disease, with varying prognosis
and treatment responses noted among patients of the same
clinical stage and pathological features. Hence, merely
describing the clinical macroscopic, and histopathological
microscopic or immunohistochemical characteristics proves
inadequate to sufficiently decide optimal treatment strategy
and foretell patient prognosis (3). 

Breast cancer classification into distinct molecular subtypes
based on specific immunophenotypic features has become the
mainstay approach for drafting the therapeutic strategy in a
somewhat personalized manner (4). More than two decades
ago, Perou and Sorlie were the first to propose a “Molecular
Classification” of the disease, according to which the five
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“molecular subtypes of Perou” are identified as: luminal A,
luminal B, basal-like, normal-like, and HER2-positive (5).
Each intrinsic molecular subtype has unique risk factors,
prognosis, prevalence, survival rate, and responsiveness to
targeted therapeutic agents that have been integral to the
improvement of clinical outcomes (6). Gene expression
profiling is now well integrated into everyday clinical practice,
but it once represented a paradigm shift that marked the
beginning of a new era of individualized medicine, leaving
behind the traditional descriptive “morphological”
classification for a more integrative approach, that considers
clinical features and immunohistochemical biomarkers.

Since the landmark study of Perou, technological
advances increased the resolution for large-scale gene-
expression and high throughput transcriptome analyses, that
have been employed to fully elucidate the inter- and intra-
tumor heterogenous nature of breast malignancies (7). In this
way, breast neoplasms can now be stratified into integrative
clusters that reveal patterns of single-nucleotide variants and
are associated with distinct clinical outcomes and response
to therapy, although the clinical significance of these
approaches remains under discussion (8). Recently published
mutational signatures, based on whole genome sequencing
data, highlighted the variability of a breast tumor’s biological
features over time due to phenotypic dynamics and genomic
evolution (9). In this context, multiple factors affect the
available amount of bioactive RNAs, but one of the key
cellular instruments to regulate gene expression levels at the
post-transcriptional level are microRNAs (miRNAs).

MiRNAs are a group of evolutionary conserved, non-
coding, single-stranded ribonucleic acids of short length
ranging from 18 to 22 nucleotides, that regulate gene
expression via binding to specific mRNA targets and leading
to their degradation or translational inhibition. Various forms
of circulating miRNAs can be detected in the blood, including
free miRNA, lipoprotein-miRNA complexes, and miRNAs
embedded in extracellular vesicles (10). Although miRNA
synthesis is tightly controlled, aberrant expression of miRNAs
is directly associated with numerous malignancies, including
breast cancer (4). The differences in miRNA composition and
level of expression between normal and neoplastic, but also
between different subtypes of a particular malignancy (e.g.,
molecular subtypes of BC), and at various disease stages (i.e.,
tumor size, regional node status, predominantly metastatic
disease), warrants a wide spectrum of clinical applications.
Therefore, circulating miRNAs emerge as critical mediators
of cancer development and progression, as well as attractive
candidates for the discovery of novel biomarkers and
therapeutic targets (2, 4, 6).

The exponential growth and complexity of scientific and
clinical data in experimental biology have transformed both
the theory and practice of oncology, promising a deeper
understanding of cancer and, accordingly, a more personalized

and effective oncological care. However, the overwhelming
amount of information on large-scale miRNA profiling poses
the additional challenge of developing efficient methods to
store and process these data and extract clinically meaningful
biological knowledge. “Bioinformatics” has been developed
to serve this purpose. Bioinformatics is an interdisciplinary
field that combines biology, chemistry, physics, computer
science, information engineering, mathematics, and statistics
to analyze and interpret extensive and complex biological data
(11). Bioinformatics typically exploits artificial intelligence
(AI), which is broadly defined as the ability of a machine to
accomplish tasks typically associated with intelligent human
behavior. A branch of AI, machine learning (ML), refers to
computer algorithms that can generate predictive models
derived from exposure to training data rather than exhaustive
a priori design, being also able to iteratively self-adjust to
optimize their performance (12). ML comprises several
subsets that are preferentially applied depending on the
available data and research question. For example, commonly
used models in biomedical research include Artificial Neural
Networks (ANNs), which process information in a manner
inspired by the neurons of the human brain, and Support
Vector Machines (SVN), which perform classification or
regression by optimizing decision boundaries in
multidimensional space. Overall, ML has a growing role in
oncology research and practice (11, 12).

Our study investigates the variations in circulating miRNA
expression profiles between breast cancer subtypes and
healthy controls in serum samples. We also employed a linear
Support Vector Machine method, an ML subset, to investigate
specific patterns more reliably in differential miRNA
expression between the various subtypes and assess the
predictive value of our investigated miRNAs for the
development of breast cancer. Finally, to deeply comprehend
the responsible molecular pathways in breast cancer
progression and their differential expression in the various
subtypes, we queried gene ontology datasets to identify target
genes of differentially expressed miRNAs and to perform
functional analysis on the gene sets. This work explores
potential and applicable miRNA targets with diagnostic and
prognostic values in all breast cancer subtypes. By
accumulating knowledge in this field and mapping out the
molecular pathways in various disease states, the critical
features will stand out, allowing for fully individualized
approaches in the true era of personalized medicine.

Materials and Methods
Patients and controls. Patients with primary breast cancer (n=66)
were selected for analysis with the miRNA PCR array. All patients
received surgery and treatment between 2017 and 2018. Tumor
subtypes were defined according to estrogen receptor (ER),
progesterone receptor (PR), and HER2 expression. ER and PR were
considered positive if more than 1% of nuclei were stained. HER2
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expression was determined by immunohistochemistry (IHC)
staining. Additional samples from 16 women without cancer history
were selected as healthy controls. All serum samples (500 μl) were
collected from women with breast cancer before surgery or
treatment and stored at –80˚C before use. Written informed consent
was obtained from all subjects for the collection and research use
of breast tumors. Our complete study was approved by the ethics
committees of the Hippocration General Hospital of Athens, Greece
and the Medical School of National and Kapodistrian University of
Athens, Greece. The clinicopathological characteristics of all breast
cancer patients are presented in Table I.

Exosome isolation and RNA extraction. Overall, we have used the
manufacturer’s instructions during the extraction process. According
to these instructions, the total RNAs from the exosome pellet were
isolated using the NucleoSpin miRNA kit (Machnery-Nagel,
Germany). All RNA samples were instantly stored at a temperature
of 80˚C (and remained there until they were used).

miRNA expression. We have used the miScript II RT Kit (Qiagen,
Hilden, Germany), to achieve the reverse transcription of 500 ng of
RNA. Subsequently, we completed the expression of a panel, which
tested for 84 miRNAs, by using the miScript™ miRNA PCR Array
Human Cancer PathwayFinder (MIHS-102Z, Qiagen) and miScript
SYBR Green PCR Kit (Qiagen). These are custom panel tests for
miRNA that have been correlated with tumor diagnosis, staging,
progression, or prognosis. Each array contained six different
snoRNA/snRNA as a normalization control for the array data
(SNORD61, SNORD68, SNORD72, SNORD95, SNORD96A,
RNU6-6P), miRNA reverse transcription control (RTC) and positive
PCR control (PPC). We were able to classify our samples into five
categories: “Healthy Controls”, “HER2-positive”, “Luminal A”,
“Luminal B”, and “Triple-negative”. We also calculated the miRNA
relative expression using the 2−ΔCt method (used for each miRNA
in each sample), normalizing on the geometric mean of the controls.
We also calculated the fold change between our groups (represented
by fold regulation) using the 2−ΔΔCt method. Lastly, we calculated
p-values using a Student’s t-test of the replicate normalized miRNA
expression values for each miRNA in our groups; they were also
corrected for FDR using the Benjamini-Hochberg method (p. adjust
function in R).

Machine learning modeling approach. In order to evaluate our
expression results and to refine them by identifying the most critical
miRNAs that were present among our groups, we employed the
“linear Support Vector Machine method” using the caret package in
R on the entire miRNA panel, regardless of previous differential
expression results (13, 14). Thus, we were able to have a broader
approach and not to exclude several features (miRNAs). We
completed data pre-processing with “scale” and “center”, and we
used the previously calculated relative expression (per miRNA and
per sample) to validate the accuracy of our model. We
independently tested each tumor sample group versus the healthy
control group in order to determine its predictive value. This model
used a 10-fold cross-validation approach with a 70%-30%
partitioning of the samples for training and testing accordingly.
Therefore, the top 20 important features for each pairing were
selected as an input for our next steps. We used the online tool
VENNY v. 2.1.0 that permitted us to further identify differentially
expressed genes (DEGs) and differentially expressed miRNAs

(DEMs), that were common among all breast cancer subtypes; this
tool was also utilized to create “Venn Diagrams” of the important
features between our models (15).

miRNA target identification and functional analysis. In our study, we
were able to detect the affected genes with the use of the
aforementioned 20 important miRNAs for all previous models
(HER2+, luminal A, luminal B, triple-negative); for this purpose, we
used the “multimir R package”  (16). We also used the following
databases on validated miRNA –target interactions in order to identify
the affected genes:”mirecords” (17), “mirtarbase” (18), and “tarbase”
(19). Finally, we enriched the resulting gene lists that were used as
input to the cluster profiler package (20) by using Gene Ontology
Molecular Function Terms (GO-MF) (21). We calculated p-values for
the GO-MF rankings with the use of the one-sided Fisher’s exact test
and the FDR (adjusted by q-value). We finally used VENNY v. 2.1.0
to find intersecting GO-MF terms from our groups. 

Results

Differential miRNA expression. As described in the
methodology section, we performed a separate differential
expression calculation of each molecular subtype group versus
healthy controls. Only miRNAs with an absolute fold change
greater than 2 (FC >2) and an adjusted p-value lower than
0.05 (p.adjust <0.05) are reported in Table II. The HER2-
positive sample group appeared to be the most perturbed (39
miRNAs), followed by the luminal A (38 miRNAs), triple-
negative (36 miRNAs), and luminal B (34 miRNAs) groups.
Notably, the HER2-positive group had 16 under-expressed
miRNAs (with the highest being miR-134 at approx. -18-fold
down-regulation) and 23 over-expressed miRNAs (with the
highest being miR-200c with approx. 15-fold up-regulation).
In the luminal A group, 14 miRNAs were down-regulated
(highest: miR-29a at approx. -20-fold), and 24 miRNAs were
up-regulated (highest: miR-21 at approx. 54-fold). In the

Triantafyllou et al: miRNA Profiling and Machine Learning 

741

Table I. Clinical characteristics of breast cancer patients.

Variables                                                   Cases,           Healthy women, 
                                                                   n=66                       n=16

Median age (range) (y)                         47 (27-68)              45 (26-64)
Molecular subtype, n                                                                   
HER2 positive                                              11                             
  Luminal A                                                 24                             
  Luminal B                                                  20                             
Triple Negative                                           11                             
Lymph node involvement, n (%)                                                 
  Yes                                                       34 (51.52)                       
  No                                                        32 (48.48)                       
Stage, n (%)                                                                                  
  1                                                           10 (15.15)                       
  2                                                           31 (46.97)                       
  3                                                           25 (37.88)                       



Luminal B group, 17 miRNAs were down-regulated (highest:
miR-20a at approx. -10-fold), and 17 miRNAs were up-
regulated (highest: miR-21 at approx. 117-fold). Finally, in the
triple-negative group, 17 miRNAs were down-regulated
(highest: miR-206 at approx. -7-fold), and 19 miRNAs were
up-regulated (highest: miR-21 at approx. +108-fold) compared
to controls. Overall, there were many commonalities between
our subtype groups regarding differential miRNA expression,
with the most notable being miR-21 having the highest up-
regulation in three out of four groups, and the second highest
in the triple-negative subset of patients.

Machine learning models. Applying a ML approach to assess
the predictive value of our investigated miRNAs in breast
cancer, allowed us to go further than the traditional
differential expression results. All four models performed
exceptionally well, with the models involving luminal A,
luminal B and triple-negative samples achieving 100%
accuracy with a Kappa of 1 and the one involving the
HER2+ sample group a 95% accuracy and a Kappa of 0.875.
Figure 1 shows the top 20 important features for each of our
models, whereas Figure 2 depicts a Venn diagram of these
features for each group. MiR-21 was the only common
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Table II. Differential miRNA expression for each sample group vs. controls.

         Luminal A vs. HC                                        Luminal B vs. HC                                 HER2+ vs. HC                                  T. Negative vs. HC

miRNA                             FR                       miRNA                        FR                     miRNA                      FR                       miRNA                          FR

miR-29a                       –19.808                    miR-20a                  –9.541                  miR-134               –17.655                   miR-206                    –6.524
miR-181d                    –19.524                    miR-148b                –6.424                  miR-34a                  –7.067                   miR-27b                    –6.160
miR-181b                    –16.513                    miR-205                  –5.844                  miR-20a                  –5.296                   miR-100                    –5.996
miR-29b                      –14.732                    miR-100                  –4.403                  miR-10a                  –3.955                   miR-130a                  –5.402
miR-23b                        –9.030                    miR-10a                  –3.883                  miR-27b                 –3.478                   miR-146a                  –4.024
miR-148b                      –8.056                    miR-15a                  –3.628                  miR-25                   –3.438                   miR-19                      –3.537
miR-181c                       –4.574                    miR-155                  –3.445                  miR-30c                  –3.394                   miR-181b                  –3.273
miR-27b                        –3.451                    miR-130a                –3.045                  miR-128                 –3.283                   miR-150                    –3.150
miR-205                        –3.248                    let-7f                        –2.716                  miR-130a                –2.821                   let-7f                          –3.087
miR-32                          –2.688                    miR-218                  –2.713                  miR-135b               –2.651                   miR-372                    –2.739
let-7f                              –2.505                    miR-146a                –2.540                  miR-155                 –2.561                   miR-10a                    –2.712
miR-148a                       –2.458                    miR-150                  –2.468                  miR-301a                –2.417                   miR-32                      –2.619
miR-146a                       –2.402                    miR-27b                  –2.379                  miR-17                   –2.372                   miR-30c                    –2.617
miR-214                        –2.155                    miR-206                  –2.270                  miR-181c                –2.119                    miR-155                    –2.478
miR-146b                      +2.021                    let-7c                       –2.262                  miR-215                 –2.038                   miR-34c                    –2.250
miR-98                          +2.053                    miR-301a                –2.183                  miR-191                 –2.021                   miR-205                    –2.197
miR-218                        +2.126                    miR-32                    –2.009                  miR-210                 +2.122                   miR-200c                  –2.113
miR-184                        +2.229                    miR-184                  +2.009                  let-7b                      +2.177                   miR-125b                  +2.303
miR-34a                        +2.255                    miR-7                      +2.013                  miR-193a               +2.337                   miR-10b                    +2.364
miR-193a                      +2.262                    miR-210                  +2.120                  miR-20b                 +2.344                   miR-98                      +2.392
miR-210                        +2.265                    let-7d                       +2.237                  miR-140                 +2.347                   miR-7                        +2.578
miR-181a                      +2.288                    miR-193a                +2.395                  miR-15b                 +2.412                   miR-135b                  +2.590
miR-133b                      +2.474                    miR-181d                +2.500                  miR-122                 +2.601                   miR-133b                  +2.657
miR-125b                      +2.550                    miR-181a                +2.519                  miR-133b               +2.803                   miR-92a                    +2.703
miR-125a                      +2.624                    miR-125a                +2.617                  miR-203a               +2.902                   miR-146b                  +2.834
miR-144                        +2.732                    let-7b                       +3.411                   miR-143                 +3.267                   let-7e                         +2.843
miR-196a                      +2.829                    miR-92a                  +3.423                  miR-144                 +3.270                   let-7b                         +2.853
let-7e                             +2.891                    miR-140                  +3.834                  miR-125a               +3.407                   miR-196a                  +2.928
let-7b                             +3.483                    miR-196a                +3.850                  miR-148a               +4.361                   miR-181d                  +3.356
miR-92a                        +3.728                    let-7e                       +5.960                  miR-184                 +4.502                   let-7a                         +4.909
miR-20a                        +5.642                    miR-203a                +6.025                  let-7e                      +4.528                   miR-20a                    +6.247
miR-140                        +7.663                    miR-148                  +8.785                  miR-206                 +4.640                   miR-34a                    +7.022
miR-142                        +7.707                    miR-25                  +77.079                  let-7a                      +4.763                   miR-17                    +16.184
miR-16                          +7.729                    miR-21                +117.043                  miR-181a               +4.853                   miR-210                  +38.659
miR-155                        +7.865                                                                                  miR-125b               +5.424                   miR-25                    +40.403
miR-206                        +9.034                                                                                  miR-196a               +8.197                   miR-21                  +107.636
miR-203a                    +31.052                                                                                  miR-205                 +8.709                                                          
miR-21                        +54.142                                                                                  miR-21                 +13.549                                                          
                                                                                                                                   miR-200c             +14.947                                                          

FR: Fold regulation; HC: healthy controls.



molecule between all four models. Other notable findings
include: 1) Let-7a, miR-30c, miR-34a, and miR-196a were
not present as important features in both luminal groups. 2)
MiR-184, let-7e, and miR-181a were not present in the
triple-negative group. 3) MiR-148b, miR-144, miR-203a,
and miR-140 were only in the top important features of the
two luminal groups. 4) Six miRNAs (miR-125b, miR-134,
miR-98, miR-143, miR-138, miR-135b) were in the top 20
of important features only for the HER2+ group; 8 miRNAs
(miR-23b, miR-142, miR-29a, miR-181d, miR-16, miR-29b,
miR-155, miR-181c) were in the top 20 of important features
only for the luminal A group; 6 miRNAs (miR-148a, let-7d,
miR-92a, miR-34c, let-7b, miR-15a) were in the top 20 of
important features only for the luminal B group, and finally,
9 miRNAs (miR-17, miR-150, miR-210, miR-372, let-7f,
miR-191, miR-133b, miR-146b, miR-7) were in the top 20
of important features only for the triple-negative group. 

miRNA target identification and functional analysis. To further
elucidate the biological background of each breast cancer sub-
phenotype, we used the previously identified important
features to identify their target genes and performed functional
analysis on the gene sets. In total, 11,346 genes were
identified for the HER2+, 12,181 for the luminal A, 11,502 for
the luminal B, and 28,160 for the triple-negative subtype. The
top 20 pathways via GO-MF for each group are depicted in
Figure 3. Since there was an overlap in identified miRNAs, it
was only logical that an intersection of the top 20 molecular
functions for each sample group existed as well. Thirteen
distinct functions appear to be shared among all sub-
phenotypes (“cadherin binding”, “transcription coregulator
activity”, “DNA-binding transcription factor binding”, “RNA
polymerase II-specific DNA-binding transcription factor
binding”, “ubiquitin-like protein ligase binding”, “GTPase
binding”, “ubiquitin protein ligase binding”, “transcription
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Figure 1. Top 20 important predictive features for our Support Vector Machine models. A) HER2+ group, B) Luminal A group, C) Luminal B group,
D) Triple negative group. 



coactivator activity”, “small GTPase binding”, “ubiquitin-like
protein transferase activity”, “ribonucleoprotein complex
binding”, “nuclear hormone receptor binding”, “protein C-
terminus binding”); HER2+ and luminal A were the only ones
who shared “SMAD binding” and “transcription corepressor
activity”; luminal B and triple-negative had “ATPase activity”
and “catalytic activity acting on RNA” in common; HER2+
and triple-negative were the only ones who shared functions,
namely “protein heterodimerization activity” and “histone
deacetylase binding”; luminal A and luminal B had only one
unique molecular function common between them (“ubiquitin-
like protein binding”), and the HER2+ shared “protein
heterodimerization activity” and “histone deacetylase binding”
with the triple-negative group. In addition, “ubiquitin-protein
transferase activity” was identified in all sub-phenotypes,
except luminal B. Finally, only luminal A and luminal B
molecular subtypes had unique functions, which characterized
them individually. For the former, it was “phosphoric ester
hydrolase activity”, “molecular adaptor activity”, “nucleoside
binding”, and for the latter, “protein kinase regulator activity”
and “histone binding.” These intersections are visualized as a
Venn diagram in Figure 4. 

Discussion

Efforts to better understand the mechanisms involved in
breast cancer initiation, progression, and resistance are more
relevant now than ever before, as we enter the era of
personalized medical oncology. In this context, miRNAs are
highly attractive molecules capable of being clinically
utilized as diagnostic, prognostic, disease monitoring, and
predictive biomarkers. Due to the high-level of complexity
in miRNA research, the differential expression of miRNAs
among distinct breast cancer subtypes, and the combined
analysis of these profiles, can help elucidate the functional
effects of miRNA expression in breast cancer. 

In the present study, we performed a comparative analysis
of miRNA expression profiles between breast tumors of all
four intrinsic molecular subtypes (luminal A, luminal B,
HER2-enriched, and basal-like) and healthy controls. Using a
quantitative reverse transcription-PCR (qRT-PCR) array
approach, we identified 147 differentially expressed miRNAs
among BC subtypes; each molecular subtype group was
separately analyzed in comparison to healthy controls. As the
amount of data was extensive and in order to fully
comprehend the emerging expression patterns, we applied a
ML approach to assess the predictive value of our investigated
miRNAs in breast cancer tumorigenesis. Interestingly, miR-21
was the only common molecule between all four breast cancer
models. It was significantly enriched in all breast cancer
subtypes compared to healthy counterparts, exhibiting the
highest expression in three out of four subtypes (i.e., luminal
A, luminal B and TNBC) and the second highest in the

remaining one (i.e., HER2+). This finding comes as no
surprise, since miR-21 is a well-recognized onco-miRNA
located in the FRA17B, a fragile site that is frequently
amplified in different types of cancers, including breast cancer
(22). High expression levels of miR-21 have been
independently correlated with advanced clinical stage, lymph
node metastasis, and shortened survival of breast cancer
patients (23). MiR-21 enhances tumor growth and invasion by
regulating signaling pathways involved in cell cycle, repair of
DNA damage, and apoptosis, as well as the NF-ĸB signaling
pathway (24). Among the genes whose expression levels are
altered by miR-21 are the tumor suppressor genes PDCD4,
PTEN, and TMP1 (22, 25). Recently, LZTFL1 was identified
as a novel target gene of miR-21. This gene may also function
as a tumor suppressor, possibly by interacting with E-cadherin
and the actin cytoskeleton and thereby, regulating the
transition of epithelial cells to mesenchymal cells (EMT). The
investigators found that knockdown of LZTFL1 overcame the
suppression of miR-21 inhibitor on cell proliferation,
metastasis, and the expression of EMT markers in breast
cancer cells (26). Furthermore, plasma miR-21 levels have
been proposed as a potential biomarker for the detection of
both primary and recurrent breast cancer, as well as a
promising strategy in breast cancer therapy since inhibition of
miR-21 suppressed cell proliferation and metastasis in breast
cancer cells (22, 26). Finally, the suppression of miR-21 has
shown to sensitize breast cancer cells to widely available
anticancer agents, such as taxol, trastuzumab, topotecan, and
doxorubicin (27).

Additional aberrant miRNAs, well-described in breast
cancer literature, were identified in our study, confirming
their important implication in tumorigenesis. Out of these,
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Figure 2. Commonalities and differences in the top 20 important
predictive miRNAs between sample groups from our Support Vector
Machine models.



four miRNA molecules, namely miR-148b, miR-144, miR-
203a, and miR-140, were identified as top predictive indices
exclusively in ER-positive breast cancers (Luminal A and B).
Specifically, miR-148b was found to be significantly down-
regulated in both luminal subtypes. This is in line with
previous studies, showing that miR-148b acts as a tumor-
suppressive miRNA in breast cancer progression by targeting
a series of cancer-related oncogenes, thus being down-
regulated in the serum samples from breast cancer patients
(28, 29). However, some contradicting results have shown
that inhibition of miR-148b promoted apoptotic cell death
via the PARP pathway, revealing its complex role in
carcinogenesis (30). Another important predictive molecule
for both luminal subtypes was miR-144. Extensive

bibliographic evidence suggests that up-regulation of miR-
144 acts in a tumor-suppressive manner, with lower miR-144
expression being associated with poor differentiation, higher
clinical stage, and lymph node metastasis in patients with
breast cancer. These functions are mediated through
inhibiting the ZEB1/2 transcription factor, that promotes
tumor invasion and metastasis by inducing EMT (31).
Interestingly, in our study, miR-144 was significantly up-
regulated in luminal A subtype cancers, which is considered
the subtype with the best prognosis, exhibiting a significantly
lower relapse rate than the others (3). Additionally, miR-203a
was found to be significantly up-regulated in both luminal
subtypes. Previously published data confirmed the oncogenic
role of miR-203a in breast cancer, with gene ontology
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Figure 3. Top 20 molecular functions identified from the target genes of the important predictive miRNAs for each sample group: A) HER2+ group,
B) Luminal A group, C) Luminal B group, D) Triple-negative group.



analysis demonstrating that miR-203a affects molecular
functions associated with “plasma membrane integrity”, “cell
surface receptor linked signal and transduction”, and “3′,5′-
cyclic nucleotide phosphodiesterase activity”, primarily
through altering the insulin-like growth factor receptor
(IGF1) gene expression (32). Finally, miR-140 emerged in
our study as of high predictive value in hormone receptor-
positive disease, being significantly over-expressed in both
luminal subtypes. However, throughout the literature, miR-
140 is commonly considered a tumor-suppressive miRNA in
luminal subtype breast carcinoma. Probably, this discordance
is attributed to its role in the maintenance of basal-like
features in breast cancer stem cells (BCSCs), characterized
by basal epithelium cytokeratin expression and negative ER
status (33). Its predictive capacity though remains undisputed
since miR-140 can sensitize BCSCs to doxorubicin by down-
regulating the Wnt/β-catenin signaling pathway (34).

Furthermore, ML analysis distinguished the top predictive
miRNAs explicitly identified in HER-2 positive breast
cancers (miR-125b, miR-134, miR-98, miR-143, miR-138,
miR-135b), with the ones ranking highest among them being
miR-125b and miR-134, as it is presented in Figure 1A.
Characteristically, miR-125b was significantly up-regulated
in the HER2-positive group compared to healthy
counterparts. Previous literature references concerning miR-
125b demonstrate it to be an onco-miRNA whose function
is mediated via the repression of the pro-apoptotic regulator
gene BAK1. Moreover, higher miR-125b expression has
been reported in non-responsive patients after admission of
5-fluorouracil, whereas miR-125b deletion on chromosome
11q was correlated with a benefit of anthracycline-based
chemotherapy and a low recurrence rate in patients with
lymph node-negative breast cancer (35). Herein, miR-134
was significantly down-regulated in the HER2-positive
group compared to healthy counterparts. Our findings agree
with previously published data suggesting a tumor
suppressor role of miR-134. Low expression levels of miR-
134 were observed in human breast cancer cell lines and
significantly associated with lymph node metastasis, TNM
stage, and reduced cell differentiation. It was suggested that
miR-134 inhibited the growth, migration, and invasion of
breast cancer cells via directly down-regulating KRAS (36).

This study identified miRNA molecules that were amongst
the top predictors exclusively in the clinically aggressive
TNBC subtype (miR-17, miR-150, miR-210, miR-372, let-7f,
miR-191, miR-133b, miR-146b, miR-7), among which the top
predictive features were exhibited by miR-17, miR-150, and
miR-210 (Figure 1D). Specifically, miR-17 was found to be
significantly up-regulated in the TNBC group compared to
healthy counterparts. Our findings agree with a previously
published study regarding miR-17 family over-expression in
high-grade triple-negative tumors. The investigators found that
miR-17 expression is coregulated with the transcription factor

and proto-oncogene Myc. In addition, the miR-17 promoter
has binding sites for HES1, a transcriptional repressor in the
Notch signaling pathway, which is also over-expressed in
triple-negative breast cancer (37). However, miR-150 was
found to be significantly down-regulated in the TNBC group
analyzed in our study, in contrast to previously published data.
Lu et al. suggested that over-expression of miR 150 enhances
breast cancer cell proliferation, invasion, and migration, as
well as increases the expression of mesenchymal cell markers
(vimentin, N cadherin and β catenin) and decreases the
expression of epithelial cell markers (E cadherin and zonula
occludens 1), via negatively regulating SRCIN1 (38).
Although our results differ, it can nevertheless be argued that
miR-150-5p expression levels in TNBC are associated with
advanced tumor grade and poor patient survival, as it has been
recently confirmed (39), factors that were out of the scope of
our analysis.

Concurrently, outputs concerning the expression of these
miRNAs were associated with specific molecular pathways
via molecular function gene ontology datasets, allowing us to
get a closer look to the preferential involvement of several
pathways in breast cancer carcinogenesis as a whole and in
specific subtypes. The gene ontology analysis was
significantly enriched in transcription coregulation, for all
breast cancer subgroups. In fact, many transcriptional
coactivators and corepressors have been involved in endocrine
response and resistance in breast cancer. Characteristically,
ER, the single most important target in breast cancer, regulates
gene expression by recruiting transcriptional coregulators and
components of the basal transcription machinery, in common
with other nuclear receptors (40). Interestingly, gene ontology
dataset research did not identify any unique molecular
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Figure 4. Intersection of the top 20 molecular functions identified by the
target genes of the important predictive miRNAs for each sample group.



functions for the triple-negative subset of tumors, inferring
what has already been extensively researched, concerning the
molecular heterogeneity of this entity (41). Although most
triple-negative cases exhibit basal-like features, a discordance
has been observed, since some of them turn out to not be
basal-like by microarray analysis, whereas others have been
found to express hormone receptors or HER2 (42). This
observation should be taken into consideration when
attempting to interpret the presented interactions and potential
regulation regarding miRNAs in triple negative breast cancer.

Our study has several limitations principally associated with
the lack of available information about the histological
features and clinical stage of the included tumors. As already
stated, miRNA expression is altered during carcinogenesis,
which may partially explain any inconsistent results regarding
miRNA expression between our study and previously
published ones. Another issue stems from the relatively small
sample size of the patients enrolled. Furthermore, a potential
pitfall is related to the ML analysis itself. In essence, we are
dealing with an elegant statistical process, which takes
advantage of a bundle of training data to draw conclusions for
raw data, being susceptible to any heterogeneity between these
groups and to statistical errors.

Despite these limitations, our study importantly investigated
an actual clinical population instead of merely performing an in
vitro analysis of breast cancer cell lines or in silico database
research. Furthermore, a parallel analysis of all breast cancer
molecular subtypes was achieved in an ethnically homogenous
population (Caucasian women of Greek ancestry) under the
same research conditions, thus avoiding potential errors arising
from interstudy comparisons. Our study greatly enriches the
present literature regarding molecular characteristics of breast
cancer and the accompanying differential miRNA expression
profiles by offering well-founded results stemming from a
combination of experimental data, ML analysis, and gene
ontology database review.

Conclusion

Currently, breast cancer management increasingly relies on the
molecular characteristics of the disease. Accumulating
knowledge suggests an ever-deepening level of detail and that
miRNA profiling may be an essential key to demystifying subtle
biological and clinical features of the various disease subtypes.
Besides, miRNAs are closely linked to cancer development and
progression, appearing to be promising biomarkers for disease
diagnosis, prognosis, and response to treatment. Today, this
ever-growing amount of data can be efficiently classified,
manipulated, and interpreted through the various subsets of
artificial intelligence under the interdisciplinary field of
“bioinformatics.” Overall, tumor miRNA profiling appears as a
crucial step towards the era of a fully personalized approach to
breast cancer.
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